Initial Commit To Git Hub

There are 3 changes:
 - All code changes will now be here instead of on Google Code
 - The license has been changed to GPLv3
 - Support for Arduino 1.0 was added
This commit is contained in:
Brett Beauregard
2011-12-14 07:20:47 -05:00
commit 98d2779e18
7 changed files with 464 additions and 0 deletions

View File

@ -0,0 +1,53 @@
/********************************************************
* PID Adaptive Tuning Example
* One of the benefits of the PID library is that you can
* change the tuning parameters at any time. this can be
* helpful if we want the controller to be agressive at some
* times, and conservative at others. in the example below
* we set the controller to use Conservative Tuning Parameters
* when we're near setpoint and more agressive Tuning
* Parameters when we're farther away.
********************************************************/
#include <PID_v1.h>
//Define Variables we'll be connecting to
double Setpoint, Input, Output;
//Define the aggressive and conservative Tuning Parameters
double aggKp=4, aggKi=0.2, aggKd=1;
double consKp=1, consKi=0.05, consKd=0.25;
//Specify the links and initial tuning parameters
PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT);
void setup()
{
//initialize the variables we're linked to
Input = analogRead(0);
Setpoint = 100;
//turn the PID on
myPID.SetMode(AUTOMATIC);
}
void loop()
{
Input = analogRead(0);
double gap = abs(Setpoint-Input); //distance away from setpoint
if(gap<10)
{ //we're close to setpoint, use conservative tuning parameters
myPID.SetTunings(consKp, consKi, consKd);
}
else
{
//we're far from setpoint, use aggressive tuning parameters
myPID.SetTunings(aggKp, aggKi, aggKd);
}
myPID.Compute();
analogWrite(3,Output);
}

View File

@ -0,0 +1,31 @@
/********************************************************
* PID Basic Example
* Reading analog input 0 to control analog PWM output 3
********************************************************/
#include <PID_v1.h>
//Define Variables we'll be connecting to
double Setpoint, Input, Output;
//Specify the links and initial tuning parameters
PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT);
void setup()
{
//initialize the variables we're linked to
Input = analogRead(0);
Setpoint = 100;
//turn the PID on
myPID.SetMode(AUTOMATIC);
}
void loop()
{
Input = analogRead(0);
myPID.Compute();
analogWrite(3,Output);
}

View File

@ -0,0 +1,60 @@
/********************************************************
* PID RelayOutput Example
* Same as basic example, except that this time, the output
* is going to a digital pin which (we presume) is controlling
* a relay. the pid is designed to Output an analog value,
* but the relay can only be On/Off.
*
* to connect them together we use "time proportioning
* control" it's essentially a really slow version of PWM.
* first we decide on a window size (5000mS say.) we then
* set the pid to adjust its output between 0 and that window
* size. lastly, we add some logic that translates the PID
* output into "Relay On Time" with the remainder of the
* window being "Relay Off Time"
********************************************************/
#include <PID_v1.h>
#define RelayPin 6
//Define Variables we'll be connecting to
double Setpoint, Input, Output;
//Specify the links and initial tuning parameters
PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT);
int WindowSize = 5000;
unsigned long windowStartTime;
void setup()
{
windowStartTime = millis();
//initialize the variables we're linked to
Setpoint = 100;
//tell the PID to range between 0 and the full window size
myPID.SetOutputLimits(0, WindowSize);
//turn the PID on
myPID.SetMode(AUTOMATIC);
}
void loop()
{
Input = analogRead(0);
myPID.Compute();
/************************************************
* turn the output pin on/off based on pid output
************************************************/
if(millis() - windowStartTime>WindowSize)
{ //time to shift the Relay Window
windowStartTime += WindowSize;
}
if(Output < millis() - windowStartTime) digitalWrite(RelayPin,HIGH);
else digitalWrite(RelayPin,LOW);
}