Added feedforward ability and windup control.

In addition to feedforward with gain and offset, also added
control over windup.
Also cleaned up some variable names for consistent capitalization.
This commit is contained in:
Jason Melvin
2012-01-24 09:52:26 -05:00
parent 20199df217
commit f8ae2f9b73
2 changed files with 130 additions and 99 deletions

View File

@ -1,16 +1,17 @@
/**********************************************************************************************
* Arduino PID Library - Version 1.0.1
* Arduino PID Library - Version 1.0.2
* by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
*
* This Library is licensed under a GPLv3 License
* Modified by Jason Melvin to include feedforward and adjustable windup
*
* This Code is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.
**********************************************************************************************/
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#include <WProgram.h>
#endif
#include <PID_v1.h>
/*Constructor (...)*********************************************************
@ -18,22 +19,24 @@
* reliable defaults, so we need to have the user set them.
***************************************************************************/
PID::PID(double* Input, double* Output, double* Setpoint,
double Kp, double Ki, double Kd, int ControllerDirection)
double Kp, double Ki, double Kd, double Kf, int ControllerDirection)
{
PID::SetOutputLimits(0, 255); //default output limit corresponds to
//the arduino pwm limits
PID::SetOutputLimits(0, 255); //default output limit corresponds to
//the arduino pwm limits
windupI = outMax; // default windup limit is outMax
sampleTime = 100; // default Controller Sample Time is 0.1 seconds
ff_zero = 0; // default feedforward zero point is 0.0 (for temp control, set to ambient)
PID::SetControllerDirection(ControllerDirection);
PID::SetTunings(Kp, Ki, Kd, Kf);
SampleTime = 100; //default Controller Sample Time is 0.1 seconds
PID::SetControllerDirection(ControllerDirection);
PID::SetTunings(Kp, Ki, Kd);
lastTime = millis()-SampleTime;
inAuto = false;
myOutput = Output;
myInput = Input;
mySetpoint = Setpoint;
lastTime = millis()-sampleTime;
inAuto = false;
myOutput = Output;
myInput = Input;
mySetpoint = Setpoint;
}
@ -47,26 +50,24 @@ void PID::Compute()
if(!inAuto) return;
unsigned long now = millis();
unsigned long timeChange = (now - lastTime);
if(timeChange>=SampleTime)
if(timeChange>=sampleTime)
{
/*Compute all the working error variables*/
double input = *myInput;
double error = *mySetpoint - input;
ITerm+= (ki * error);
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
double dInput = (input - lastInput);
double input = *myInput; // read current input condition
double error = *mySetpoint - input; // error is difference between setpoint and input
iTerm+= (ki * error); // add additional error to the integral term
iTerm = constrain( iTerm , -windupI , windupI ); // limit the integral term to +/- windup parameter
double dInput = (input - lastInput); // derivative is based on change in the input
/*Compute PID Output*/
double output = kp * error + ITerm- kd * dInput;
double output = kp * error + iTerm - kd * dInput + kf * (*mySetpoint - ff_zero);
if(output > outMax) output = outMax;
else if(output < outMin) output = outMin;
*myOutput = output;
output = constrain( output , outMin , outMax ); // limit output to within min/max
*myOutput = output; // write the current output
/*Remember some variables for next time*/
lastInput = input;
lastTime = now;
lastInput = input; // last input is for computing the derivative term
lastTime = now; // last time is for determining when to recompute
}
}
@ -76,40 +77,60 @@ void PID::Compute()
* it's called automatically from the constructor, but tunings can also
* be adjusted on the fly during normal operation
******************************************************************************/
void PID::SetTunings(double Kp, double Ki, double Kd)
void PID::SetTunings(double Kp, double Ki, double Kd, double Kf)
{
if (Kp<0 || Ki<0 || Kd<0) return;
if (Kp<0 || Ki<0 || Kd<0 || Kf<0) return;
dispKp = Kp; dispKi = Ki; dispKd = Kd;
dispKp = Kp; dispKi = Ki; dispKd = Kd; dispKf = Kf;
double SampleTimeInSec = ((double)SampleTime)/1000;
double sampleTimeInSec = ((double)sampleTime)/1000;
kp = Kp;
ki = Ki * SampleTimeInSec;
kd = Kd / SampleTimeInSec;
ki = Ki * sampleTimeInSec;
kd = Kd / sampleTimeInSec;
kf = Kf;
if(controllerDirection ==REVERSE)
{
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
kf = (0 - kf);
}
}
/* SetSampleTime(...) *********************************************************
/* SetsampleTime(...) *********************************************************
* sets the period, in Milliseconds, at which the calculation is performed
******************************************************************************/
void PID::SetSampleTime(int NewSampleTime)
void PID::SetSampleTime(int NewsampleTime)
{
if (NewSampleTime > 0)
if (NewsampleTime > 0)
{
double ratio = (double)NewSampleTime
/ (double)SampleTime;
double ratio = (double)NewsampleTime
/ (double)sampleTime;
ki *= ratio;
kd /= ratio;
SampleTime = (unsigned long)NewSampleTime;
sampleTime = (unsigned long)NewsampleTime;
}
}
/* SetWindupI(...)********************
* Sets the windup limit for the integral term,
* which is otherwise limited to outMax
***************************************/
void PID::SetWindupI(double limit)
{
if (limit > 0) windupI = limit;
}
/* SetFF_zero(...)********************
* Sets the zero point for the feedforward term,
* which is otherwise 0.0
***************************************/
void PID::SetFFzero(double zeropoint)
{
ff_zero = zeropoint;
}
/* SetOutputLimits(...)****************************************************
* This function will be used far more often than SetInputLimits. while
* the input to the controller will generally be in the 0-1023 range (which is
@ -121,16 +142,16 @@ void PID::SetSampleTime(int NewSampleTime)
void PID::SetOutputLimits(double Min, double Max)
{
if(Min >= Max) return;
if (outMax) windupI *= Max / outMax;
outMin = Min;
outMax = Max;
if(inAuto)
{
if(*myOutput > outMax) *myOutput = outMax;
else if(*myOutput < outMin) *myOutput = outMin;
if(ITerm > outMax) ITerm= outMax;
else if(ITerm < outMin) ITerm= outMin;
if(iTerm > outMax) iTerm= outMax;
else if(iTerm < outMin) iTerm= outMin;
}
}
@ -155,10 +176,10 @@ void PID::SetMode(int Mode)
******************************************************************************/
void PID::Initialize()
{
ITerm = *myOutput;
iTerm = *myOutput;
lastInput = *myInput;
if(ITerm > outMax) ITerm = outMax;
else if(ITerm < outMin) ITerm = outMin;
if(iTerm > windupI) iTerm = windupI;
else if(iTerm < outMin) iTerm = outMin;
}
/* SetControllerDirection(...)*************************************************
@ -171,9 +192,10 @@ void PID::SetControllerDirection(int Direction)
{
if(inAuto && Direction !=controllerDirection)
{
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
kp = (0 - kp);
ki = (0 - ki);
kd = (0 - kd);
kf = (0 - kf);
}
controllerDirection = Direction;
}
@ -186,6 +208,8 @@ void PID::SetControllerDirection(int Direction)
double PID::GetKp(){ return dispKp; }
double PID::GetKi(){ return dispKi;}
double PID::GetKd(){ return dispKd;}
double PID::GetKf(){ return dispKf;}
double PID::GetWi(){ return windupI;}
double PID::GetFFzero(){ return ff_zero;}
int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}
int PID::GetDirection(){ return controllerDirection;}