#ifndef PID_v1_h #define PID_v1_h #define LIBRARY_VERSION 1.2.1 enum modes : uint8_t {OFF, AUTOMATIC, MANUAL, OVERFLOW}; class PID { public: //Constants used in some of the functions below #define DIRECT 0 #define REVERSE 1 #define P_ON_M 0 #define P_ON_E 1 //commonly used functions ************************************************************************** PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and double, double, double, int, int);// Setpoint. Initial tuning parameters are also set here. // (overload for specifying proportional mode) PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and double, double, double, int); // Setpoint. Initial tuning parameters are also set here void Mode(int Mode); // * sets PID to either Manual or Auto int CycleMode(); bool Compute(); // * performs the PID calculation. it should be // called every time loop() cycles. ON/OFF and // calculation frequency can be set using SetMode // SetSampleTime respectively int ComputeTune(); void OutputLimits(double, double); // * clamps the output to a specific range. 0-255 by default, but // it's likely the user will want to change this depending on // the application //available but not commonly used functions ******************************************************** void SetTunings(double, double, // * While most users will set the tunings once in the double); // constructor, this function gives the user the option // of changing tunings during runtime for Adaptive control void SetTunings(double, double, // * overload for specifying proportional mode double, int); void Direction(int); // * Sets the Direction, or "Action" of the controller. DIRECT // means the output will increase when error is positive. REVERSE // means the opposite. it's very unlikely that this will be needed // once it is set in the constructor. void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which // the PID calculation is performed. default is 100 //Display functions **************************************************************** double Kp(); // These functions query the pid for interal values. double Ki(); // they were created mainly for the pid front-end, double Kd(); // where it's important to know what is actually modes Mode(); // inside the PID. int Direction(); // // Auto Tune Public void Cancel(); // * Stops the AutoTune void OutputStep(double); // * how far above and below the starting value will the output step? double OutputStep(); // void LookbackSec(int); // * how far back are we looking to identify peaks int LookbackSec(); // void NoiseBand(double); // * the autotune will ignore signal chatter smaller than this value double NoiseBand(); // this should be acurately set double TunedKp(); // * once autotune is complete, these functions contain the double TunedKi(); // computed tuning parameters. double TunedKd(); private: void Initialize(); double kp; // * (P)roportional Tuning Parameter double ki; // * (I)ntegral Tuning Parameter double kd; // * (D)erivative Tuning Parameter int controllerDirection; int pOn; double *myInput; // * Pointers to the Input, Output, and Setpoint variables double *myOutput; // This creates a hard link between the variables and the double *mySetpoint; // PID, freeing the user from having to constantly tell us // what these values are. with pointers we'll just know. unsigned long lastTime; double outputSum, lastInput; double outMin, outMax; bool inAuto, pOnE; modes OpMode; // Autotune stuff void FinishUp(); bool isMax, isMin; double noise_band; bool autotune_running; unsigned long peak1, peak2; int SampleTime; int nLookBack; int peakType; double lastInputs[101]; double peaks[10]; int peakCount; bool atune_peak_change; double absMax, absMin; double oStep; double outputStart; double Ku, Pu; }; #endif