Made a much more involved kettle control class.

All the input/output tracking is handled with class members
instead of passing pointers to global variables.
This commit is contained in:
Chris Giacofei 2022-01-21 10:56:41 -05:00
parent c7857c1b03
commit 8b72a16203
5 changed files with 100 additions and 77 deletions

View File

@ -3,28 +3,21 @@
#include <SPI.h>
#include <Ethernet.h>
#include <EEPROM.h>
#include <PubSubClient.h>
#include <cJSON.h>
// Additoinal Libraries
#include <cJSON.h>
#include <PubSubClient.h>
#include <LiquidCrystal_I2C.h>
#include <LiquidMenu.h> // LiquidMenu_config.h needs to be modified to use I2C.
#include <MD_REncoder.h>
#include <Adafruit_MAX31865.h>
// My Includes
#include "config.h"
#include "globals.h"
#include "button.h"
#include "slowPWM.h"
#include "thermoControl.h"
// Global variables.
uint8_t KettleDuty = 0;
uint8_t KettleTemp;
uint8_t KettleSetpoint;
modes KettleMode = OFF;
const int UpdateInterval = 5000;
/* Defined in config.h for now */
// uint8_t ThreshPWR = 5;
// double Hysteresis = 1;
@ -34,24 +27,20 @@ Button Enter;
MD_REncoder rotary = MD_REncoder(I_DT, I_CLK);
LiquidCrystal_I2C lcd(0x27,20,4);
// Internal I/O
Adafruit_MAX31865 KettleThermo = Adafruit_MAX31865(kettleRTDCS);
// Internal I/O objects.
slowPWM boilPWM;
thermoControl KettleController;
void MessageReceived(char*, byte*, unsigned int);
// Network objects.
EthernetClient net;
PubSubClient mqtt_client;
unsigned long lastRun = 0;
// Return a character array to represent the
// On/Off state of the kettle.
// state of the kettle.
char* ShowKettleState() {
if (KettleMode == MANUAL) {
if (KettleController.Mode() == MANUAL) {
return (char*)F("Kettle: Manual");
} else if (KettleMode == AUTOMATIC) {
} else if (KettleController.Mode() == AUTOMATIC) {
return (char*)F("Kettle: Auto");
} else {
return (char*)F("Kettle: Off");
@ -61,18 +50,18 @@ char* ShowKettleState() {
char* ShowKettleSetting() {
static char LCD_Line[21];
char setting[4];
if (KettleMode == MANUAL) {
if (KettleController.Mode() == MANUAL) {
strcpy(LCD_Line, (char*)F("Kettle Power: "));
itoa(KettleDuty / 10, setting, 10);
itoa(KettleController.Power(), setting, 10);
strcat(LCD_Line, setting);
strcat(LCD_Line, "%");
strcat(LCD_Line, (char*)F("%"));
return LCD_Line;
} else if (KettleMode == AUTOMATIC) {
} else if (KettleController.Mode() == AUTOMATIC) {
strcpy(LCD_Line, (char*)F("Kettle Temp: "));
itoa(KettleSetpoint / 10, setting, 10);
itoa(KettleController.Setpoint(), setting, 10);
strcat(LCD_Line, setting);
strcat(LCD_Line, "F");
strcat(LCD_Line, (char*)F("F"));
return LCD_Line;
} else {
return (char*)"";
@ -87,18 +76,20 @@ void doEncoder()
{
uint8_t result = rotary.read();
uint8_t inc;
uint8_t KettleDuty = (uint8_t)KettleController.Power();
if (result) {
uint8_t speed = rotary.speed();
speed >= 10 ? inc = 50 : inc = 10;
speed >= 10 ? inc = 5 : inc = 1;
}
if (result == DIR_CW && KettleDuty < 1000) {
if (result == DIR_CW && KettleDuty < 100) {
KettleDuty = (KettleDuty / inc) * inc + inc;
} else if (result == DIR_CCW && KettleDuty > 0) {
KettleDuty = (KettleDuty / inc) * inc - inc;
}
KettleController.Power((double)KettleDuty);
SettingChanged = true;
}
// LCD menu setup.
@ -146,23 +137,16 @@ void setup() {
};
void UpdateBoilKettle(){
static uint8_t last_KettleDuty = 0;
static uint8_t last_KettleTemp = 0;
if (Enter.pressed()) {
KettleMode = (modes)(KettleMode + 1);
menu.update();
KettleController.CycleMode();
SettingChanged = true;
}
if (last_KettleDuty != KettleDuty) {
last_KettleDuty = KettleDuty;
menu.update();
}
if (last_KettleTemp != KettleTemp) {
last_KettleTemp = KettleTemp;
if (SettingChanged) {
menu.update();
SettingChanged = false;
}
if (KettleController.Mode() != OFF) {
@ -174,7 +158,6 @@ void UpdateBoilKettle(){
}
void loop() {
KettleTemp = (uint8_t)(KettleThermo.readRTD() * 10);
UpdateBoilKettle();
unsigned long elapsedTime = (millis() - lastRun);

View File

@ -1,3 +1,4 @@
void ConnectMQTT() {
ConfigData config;
EEPROM.get(ConfAddress, config);

View File

@ -17,7 +17,6 @@ class slowPWM {
lastSwitchTime = 0;
outputState = LOW;
pinMode(pin, OUTPUT);
Serial.println("Setup PWM");
}
byte compute(uint8_t duty) {

View File

@ -3,13 +3,24 @@
#include <EEPROM.h>
#include "thermoControl.h"
void thermoControl::begin(uint8_t* input_temp, uint8_t* setpoint_temp, uint8_t* output_pwm, uint8_t max_threshold, uint8_t hysteresis) {
output_pwm = output_pwm;
input_temp = input_temp;
setpoint_temp = setpoint_temp;
outMax = 1000;
outMin = 100;
void thermoControl::begin(int8_t pinRTD) {
RTD = new Adafruit_MAX31865(pinRTD);
outMax = 100;
outMin = 10;
OpMode = OFF;
SampleTime = 100;
lastTime = millis()-SampleTime;
}
void thermoControl::begin(int8_t pinRTD, double temp, double output_pwm, double max_pwr_threshold, double hysteresis) {
output_pwm = output_pwm;
RTD = new Adafruit_MAX31865(pinRTD);
control_temp = temp;
outMax = 100;
outMin = 10;
OpMode = OFF;
SampleTime = 100;
@ -20,20 +31,22 @@ bool thermoControl::Compute() {
unsigned long now = millis();
unsigned long timeChange = (now - lastTime);
if(timeChange>=SampleTime && OpMode == AUTOMATIC) {
uint8_t output;
uint8_t error = *setpoint_temp - *input_temp;
double temp = RTD->readRTD();
if (error >= *max_threshold) {
if(timeChange>=SampleTime && OpMode == AUTOMATIC) {
double output;
double error = control_temp - temp;
if (error >= max_pwr_threshold) {
output = outMax;
} else if (error > *hysteresis) {
output = 100 * error / *max_threshold;
} else if (error > hysteresis) {
output = 100 * error / max_pwr_threshold;
output = max(output, outMin);
output = min(output, outMax);
} else {
output = 0;
}
*output_pwm = output;
output_pwm = output;
lastTime = now;
return true;
@ -42,28 +55,48 @@ bool thermoControl::Compute() {
}
}
double thermoControl::Power() {
return output_pwm;
}
void thermoControl::Power(double pwr) {
output_pwm = pwr;
}
double thermoControl::Setpoint() {
return control_temp;
}
void thermoControl::Setpoint(double temp) {
control_temp = temp;
}
void thermoControl::SetSampleTime(int NewSampleTime) {
if (NewSampleTime > 0) {
SampleTime = (unsigned long)NewSampleTime;
}
}
void thermoControl::SetPowerLimits(uint8_t Max, uint8_t Min) {
void thermoControl::SetPowerLimits(double Max, double Min) {
if(Min >= Max) return;
outMax = Max;
outMin = Min;
}
void thermoControl::SetMode(modes newMode) {
void thermoControl::Mode(modes newMode) {
OpMode = newMode;
}
modes thermoControl::GetMode() {
modes thermoControl::Mode() {
return OpMode;
}
modes thermoControl::CycleMode() {
if (OpMode + 1 == OVERFLOW) {
OpMode = (modes)(0);
} else {
OpMode = (modes)(OpMode + 1);
}
return OpMode;
}

View File

@ -1,17 +1,19 @@
#ifndef THERMOCONTROL_h
#define THERMOCONTROL_h
enum modes : uint8_t {OFF, AUTOMATIC, MANUAL};
#include <Adafruit_MAX31865.h>
enum modes : uint8_t {OFF, AUTOMATIC, MANUAL, OVERFLOW};
class thermoControl {
private:
double *input_temp;
double *output_pwm;
double *setpoint_temp;
double *hysteresis;
double *max_threshold;
double outMax;
double outMin;
Adafruit_MAX31865* RTD;
double output_pwm;
double control_temp;
double hysteresis;
double max_pwr_threshold;
int outMax;
int outMin;
modes OpMode;
@ -19,14 +21,19 @@ class thermoControl {
unsigned long lastTime;
public:
void begin(uint8_t*, uint8_t*, uint8_t*, uint8_t, uint8_t);
void begin(int8_t, double, double, double, double);
void begin(int8_t);
bool Compute();
double Power();
void Power(double);
double Setpoint();
void Setpoint(double);
void SetSampleTime(int);
void SetPowerLimits(uint8_t, uint8_t);
void SetHysteresis(uint8_t);
void SetThreshPWR(uint8_t);
void SetMode(modes);
modes GetMode();
void SetPowerLimits(double, double);
void SetHysteresis(double);
void SetThreshPWR(double);
void Mode(modes);
modes Mode();
modes CycleMode();
};