Brewery-Controller/boil_kettle/boil_kettle.ino
2024-04-26 08:55:20 -04:00

256 lines
6.3 KiB
C++

//Built-in
#include <Arduino.h>
#include <SPI.h>
//#include <Ethernet.h>
// Additoinal Libraries
#include <ArduinoJson.h>
//#include <MQTT.h>
#include <LiquidCrystal_I2C.h>
#include <LiquidMenu.h> // LiquidMenu_config.h needs to be modified to use I2C.
#include <MD_REncoder.h>
#include <Adafruit_MAX31865.h>
//#include <EEPROM-Storage.h>
// My Includes
#include "config.h"
#include "src/button/button.h"
#include "src/slowPWM/slowPWM.h"
#include "src/thermoControl/thermoControl.h"
//#include "src/Arduino-PID-Library/PID_v1.h"
double KettleDuty = 0;
double KettleSetpoint = 70;
double CurrentTemp;
bool tuning = false;
//EEPROMStorage<double> eepromKp(0, 2.0); // 9 bytes for doubles 8 + 1 for checksum
//EEPROMStorage<double> eepromKi(9, 5.0); // Initialize at zero.
//EEPROMStorage<double> eepromKd(18, 1.0);
// User I/O objects.
Button Enter;
slowPWM boilPWM;
MD_REncoder rotary = MD_REncoder(encoderDT, encoderCLK);
LiquidCrystal_I2C lcd(0x27, 20, 4);
Adafruit_MAX31865 thermoRTD = Adafruit_MAX31865(KettleRTD);
thermoControl Controller(&CurrentTemp, &KettleSetpoint, &KettleDuty, AUTOMATIC);
//PID ControllerPID(&CurrentTemp, &KettleDuty, &KettleSetpoint, eepromKp, eepromKi, eepromKd, P_ON_M, DIRECT);
unsigned long lastRun = 0;
// Return a character array to represent the
// On/Off state of the kettle.
char* KettleState() {
switch (Controller.Mode()) {
case OFF: return (char*)"OFF";
case AUTOMATIC: return (char*)"AUT";
case MANUAL: return (char*)"MAN";
}
}
byte setpoint() {
return (byte)KettleSetpoint;
}
byte duty() {
return (byte)KettleDuty;
}
byte current() {
return (byte)CurrentTemp;
}
// LCD menu setup.
LiquidLine KettleState_line(0, 0, "Boil Kettle ", KettleState);
LiquidLine kettle_temp_line(0, 1, "Setpoint (F) ", setpoint);
LiquidLine kettle_power_line(0, 2, "Power (%) ", duty);
LiquidLine kettle_currenttemp_line(0, 3, "Actual Temp (F) ", current);
LiquidScreen home_screen(KettleState_line, kettle_temp_line, kettle_power_line,kettle_currenttemp_line);
LiquidMenu menu(lcd);
// Interrupt function to run when encoder is turned.
//
// Increases/decreases the kettle output to a max
// of 100% and minimum of 0%.
void doEncoder() {
uint8_t result = rotary.read();
uint8_t inc = 1;
if (result) {
uint8_t speed = rotary.speed();
speed >= 10 ? inc = 5 : inc = 1;
}
if (Controller.Mode() == AUTOMATIC) {
if (result == DIR_CW) {
KettleSetpoint = (KettleSetpoint / inc) * inc + inc;
} else if (result == DIR_CCW) {
KettleSetpoint = (KettleSetpoint / inc) * inc - inc;
}
KettleSetpoint = max(KettleSetpoint,0);
KettleSetpoint = min(KettleSetpoint,212);
} else if (Controller.Mode() == MANUAL) {
if (result == DIR_CW) {
KettleDuty = (KettleDuty / inc) * inc + inc;
} else if (result == DIR_CCW) {
KettleDuty = (KettleDuty / inc) * inc - inc;
}
KettleDuty = max(KettleDuty,0);
KettleDuty = min(KettleDuty,100);
}
//menu.update();
}
void setup() {
lastRun = millis() - UpdateInterval;
Serial.begin(115200);
rotary.begin();
thermoRTD.begin(MAX31865_3WIRE);
attachInterrupt(digitalPinToInterrupt(encoderCLK), doEncoder, CHANGE);
attachInterrupt(digitalPinToInterrupt(encoderDT), doEncoder, CHANGE);
pinMode(encoderCLK, INPUT_PULLUP);
pinMode(encoderDT, INPUT_PULLUP);
Enter.begin(encoderBTN);
boilPWM.begin(kettlePWM, PeriodPWM);
Controller.Mode(OFF);
lcd.init();
lcd.backlight();
menu.init();
menu.add_screen(home_screen);
menu.update();
};
void run_kettle() {
if (Enter.pressed()) {
Serial.println("Enter Pressed");
if (Controller.CycleMode() == OFF) {
KettleDuty = 0;
}
menu.update();
}
Controller.Compute();
}
/*
void run_tuning() {
if (Enter.pressed()) {
stopAutoTune();
}
int result = ControllerPID.ComputeTune();
if (result!=0)
{
tuning = false;
}
if(!tuning)
{ //we're done, set the tuning parameters
ControllerPID.SetTunings(ControllerPID.TunedKp(),ControllerPID.TunedKi(),ControllerPID.TunedKd());
ControllerPID.Mode(OFF);
}
}
*/
void loop() {
unsigned long now = millis();
static unsigned long lastTime=now-2000;
unsigned long timeChange = (now - lastTime);
static byte lastoutput = LOW;
static double lastKettleDuty = 0;
static double lastKettleSetpoint = 0;
static byte lastTemperature;
if(timeChange >= 2000) {
CurrentTemp = 32 + 1.8 * thermoRTD.temperature(RNOMINAL_KETTLE, RREF_KETTLE);
lastTime = now;
}
if (!tuning) {
run_kettle();
} else {
//run_tuning();
}
byte output = boilPWM.Compute(KettleDuty);
if (output != lastoutput) {
digitalWrite(kettlePWM, output);
lastoutput = output;
}
if (lastKettleDuty != KettleDuty || lastKettleSetpoint != KettleSetpoint || lastTemperature != (byte)CurrentTemp) {
menu.update();
lastKettleDuty = KettleDuty;
lastKettleSetpoint = KettleSetpoint;
lastTemperature = (byte)CurrentTemp;
}
}
/*
void startAutoTune() {
if(!tuning) {
//Set the output to the desired starting frequency.
KettleDuty=50;
ControllerPID.SetNoiseBand(1);
ControllerPID.SetOutputStep(30);
ControllerPID.SetLookbackSec(20);
ControllerPID.Mode(AUTOMATIC);
tuning=true;
}
}
void stopAutoTune() {
if(tuning) { //cancel autotune
ControllerPID.Cancel();
ControllerPID.Mode(OFF);
tuning=false;
}
}
void SaveTunings() {
eepromKp = ControllerPID.GetKp();
eepromKi = ControllerPID.GetKi();
eepromKd = ControllerPID.GetKd();
}
void SerialSend()
{
Serial.print("setpoint: ");Serial.print(KettleSetpoint); Serial.print(" ");
Serial.print("input: ");Serial.print(CurrentTemp); Serial.print(" ");
Serial.print("output: ");Serial.print(KettleDuty); Serial.print(" ");
if(tuning){
Serial.println("tuning mode");
} else {
Serial.print("kp: ");Serial.print(ControllerPID.GetKp());Serial.print(" ");
Serial.print("ki: ");Serial.print(ControllerPID.GetKi());Serial.print(" ");
Serial.print("kd: ");Serial.print(ControllerPID.GetKd());Serial.println();
}
}
void SerialReceive()
{
if(Serial.available()) {
String myinput;
myinput = Serial.readString();
myinput.trim();
if(myinput=="start"){
startAutoTune();
} else if(myinput=="stop") {
stopAutoTune();
} else if(myinput=="save") {
SaveTunings();
}
}
}
*/