diff --git a/train_CNN.py b/train_CNN.py new file mode 100644 index 0000000..c24fecc --- /dev/null +++ b/train_CNN.py @@ -0,0 +1,74 @@ +""" +related to CNN_model 1-6 +""" + +from keras.models import Sequential +from keras.layers import Dense, Dropout, Flatten, Activation +from keras.layers import Convolution2D, MaxPooling2D +from keras.utils import np_utils +from util import * + + + +BATCH_SIZE = 100 +NB_CLASSES = 2 +NB_EPOCH = 5 +img_rows, img_cols = (50, 50) +INPUT_SHAPE = (img_rows, img_cols, 1) +MODEL_SAVE_PATH = './CNN_model7.h5' + +print("loading data...") +X, y = load_data(['./data/positive_data3.csv', './data/negative_not_empty4.csv']) +train_size = int(0.9 * X.shape[0]) +X_train = X[0:train_size, :] +y_train = y[0:train_size] +X_test = X[train_size:, :] +y_test = y[train_size:] + +X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) +X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) +X_train = X_train.transpose(0, 2, 3, 1) +X_test = X_test.transpose(0, 2, 3, 1) + +X_train = X_train.astype('float32') +X_test = X_test.astype('float32') +X_train /= 65535. +X_test /= 65535. +print('X_train shape:', X_train.shape) +print(X_train.shape[0], 'train samples') +print(X_test.shape[0], 'test samples') +Y_train = np_utils.to_categorical(y_train, NB_CLASSES) +Y_test = np_utils.to_categorical(y_test, NB_CLASSES) + + +# define the CNN +model = Sequential() +model.add(Convolution2D(nb_filter=16, nb_row=3, nb_col=3, border_mode='valid', input_shape=INPUT_SHAPE)) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='valid')) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='valid')) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Dropout(0.25)) +model.add(Flatten()) +model.add(Dense(1000)) +model.add(Activation('relu')) +model.add(Dropout(0.5)) +model.add(Dense(NB_CLASSES)) +model.add(Activation('softmax')) + +model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) + +model.fit(X_train, Y_train, batch_size=BATCH_SIZE, nb_epoch=NB_EPOCH, shuffle=True, + verbose=1, validation_split=0.1) + +model.save(MODEL_SAVE_PATH) +""" +model = load_model(MODEL_SAVE_PATH) +""" +score = model.evaluate(X_test, Y_test, verbose=0) +print('Test score:', score[0]) +print('Test accuracy:', score[1]) diff --git a/train_CNN2.py b/train_CNN2.py new file mode 100644 index 0000000..7fdf4c0 --- /dev/null +++ b/train_CNN2.py @@ -0,0 +1,74 @@ +""" +related to CNN_detect 7,8 +""" + +from keras.models import Sequential +from keras.layers import Dense, Dropout, Flatten, Activation +from keras.layers import Convolution2D, MaxPooling2D +from keras.utils import np_utils +from util import * + + + +BATCH_SIZE = 100 +NB_CLASSES = 2 +NB_EPOCH = 5 +img_rows, img_cols = (50, 50) +INPUT_SHAPE = (img_rows, img_cols, 1) +MODEL_SAVE_PATH = './CNN_model9.h5' + +print("loading data...") +X, y = load_data(['./data/positive_data3.csv', './data/negative_not_empty4.csv']) +train_size = int(0.9 * X.shape[0]) +X_train = X[0:train_size, :] +y_train = y[0:train_size] +X_test = X[train_size:, :] +y_test = y[train_size:] + +X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) +X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) +X_train = X_train.transpose(0, 2, 3, 1) +X_test = X_test.transpose(0, 2, 3, 1) + +X_train = X_train.astype('float32') +X_test = X_test.astype('float32') +X_train /= 65535. +X_test /= 65535. +print('X_train shape:', X_train.shape) +print(X_train.shape[0], 'train samples') +print(X_test.shape[0], 'test samples') +Y_train = np_utils.to_categorical(y_train, NB_CLASSES) +Y_test = np_utils.to_categorical(y_test, NB_CLASSES) + + +# define the CNN +model = Sequential() +model.add(Convolution2D(nb_filter=16, nb_row=3, nb_col=3, border_mode='valid', input_shape=INPUT_SHAPE)) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='same')) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='same')) +model.add(Activation('relu')) +model.add(MaxPooling2D(pool_size=(2, 2))) +model.add(Dropout(0.25)) +model.add(Flatten()) +model.add(Dense(32)) +model.add(Activation('relu')) +model.add(Dropout(0.5)) +model.add(Dense(NB_CLASSES)) +model.add(Activation('softmax')) + +model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) + +model.fit(X_train, Y_train, batch_size=BATCH_SIZE, nb_epoch=NB_EPOCH, shuffle=True, + verbose=1, validation_split=0.1) + +model.save(MODEL_SAVE_PATH) +""" +model = load_model(MODEL_SAVE_PATH) +""" +score = model.evaluate(X_test, Y_test, verbose=0) +print('Test score:', score[0]) +print('Test accuracy:', score[1])