""" related to CNN_mask """ from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from util import * from prepare_data import * def load_mask_data(): Xy_list = list() seg_im_data = load_seg_im_data('seg_im_data.mat') Xy = gen_mask_example(seg_im_data) np.random.shuffle(Xy) X = Xy[:, 2500:] y = Xy[:, 0:2500] X = X.reshape(X.shape[0], WINDOW_SHAPE[0], WINDOW_SHAPE[1]) return X, y BATCH_SIZE = 100 NB_EPOCH = 10 NB_OUTPUT = 2500 img_rows, img_cols = (50, 50) INPUT_SHAPE = (img_rows, img_cols, 1) MODEL_SAVE_PATH = './CNN_mask.h5' print("loading data...") X, y = load_mask_data() train_size = int(0.9 * X.shape[0]) X_train = X[0:train_size, :] y_train = y[0:train_size] X_test = X[train_size:, :] y_test = y[train_size:] X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) X_train = X_train.transpose(0, 2, 3, 1) X_test = X_test.transpose(0, 2, 3, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 65535. X_test /= 65535. print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') Y_train = y_train Y_test = y_test # define the CNN model = Sequential() model.add(Convolution2D(nb_filter=16, nb_row=3, nb_col=3, border_mode='valid', input_shape=INPUT_SHAPE)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(NB_OUTPUT)) model.add(Activation('tanh')) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(X_train, Y_train, batch_size=BATCH_SIZE, nb_epoch=NB_EPOCH, shuffle=True, verbose=1, validation_split=0.1) model.save(MODEL_SAVE_PATH)