""" related to CNN_model 1-6 """ from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from util import * BATCH_SIZE = 100 NB_CLASSES = 2 NB_EPOCH = 5 img_rows, img_cols = (50, 50) INPUT_SHAPE = (img_rows, img_cols, 1) MODEL_SAVE_PATH = './CNN_model7.h5' print("loading data...") X, y = load_data(['./data/positive_data3.csv', './data/negative_not_empty4.csv']) train_size = int(0.9 * X.shape[0]) X_train = X[0:train_size, :] y_train = y[0:train_size] X_test = X[train_size:, :] y_test = y[train_size:] X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) X_train = X_train.transpose(0, 2, 3, 1) X_test = X_test.transpose(0, 2, 3, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 65535. X_test /= 65535. print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') Y_train = np_utils.to_categorical(y_train, NB_CLASSES) Y_test = np_utils.to_categorical(y_test, NB_CLASSES) # define the CNN model = Sequential() model.add(Convolution2D(nb_filter=16, nb_row=3, nb_col=3, border_mode='valid', input_shape=INPUT_SHAPE)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='valid')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(nb_filter=32, nb_row=3, nb_col=3, border_mode='valid')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(1000)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(NB_CLASSES)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy']) model.fit(X_train, Y_train, batch_size=BATCH_SIZE, nb_epoch=NB_EPOCH, shuffle=True, verbose=1, validation_split=0.1) model.save(MODEL_SAVE_PATH) """ model = load_model(MODEL_SAVE_PATH) """ score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1])