deepYeast/util.py
2017-09-18 16:31:54 -05:00

163 lines
4.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import scipy.io as sio
import os
from PIL import Image
import matplotlib as mpl
import matplotlib.pyplot as plt
import time
import numpy as np
import skimage
from skimage import draw
#import cv2
IMAGE_SHAPE = (512, 512, 1)
WINDOW_SHAPE = (50, 50)
STEP_SIZE = (7, 7)
def correct_image_path(path_imageBF):
pl = path_imageBF.split(':')
correct_path = 'I:' + pl[1]
return correct_path
def load_csg(filename_csg):
mat_contents = sio.loadmat(filename_csg)
hh = mat_contents['hh']
val = hh[0, 0]
seg_data = dict()
seg_data['cellsegperim'] = val['cellsegperim']
seg_data['filenameBF'] = val['filenameBF']
seg_data['path_imageBF'] = str(val['pathnameBF'][0])
# 下步仅用于矫正不同机器上驱动器名称的误差
seg_data['path_imageBF'] = correct_image_path(seg_data['path_imageBF'])
return seg_data
def transform_cellseg(cellseg):
cellsegs = list()
for i in range(cellseg.shape[0]):
seg = cellseg[i, 0]
if(seg.shape[1]==2):
cellsegs.append(seg)
return cellsegs
def get_seg_im(seg_data, idx):
seg_im = dict()
seg_im['cellseg'] = transform_cellseg(seg_data['cellsegperim'][0, idx])
seg_im['filenameBF'] = str(seg_data['filenameBF'][0, idx][0])
image_file = os.path.join(seg_data['path_imageBF'], seg_im['filenameBF'])
seg_im['imageBF'] = np.array(Image.open(image_file))
return seg_im
def segperim_generator(seg_data):
for i in range(seg_data['cellsegperim'].shape[1]):
seg_im = get_seg_im(seg_data, i)
yield seg_im
def plot_cellseg(seg_im):
colormap = mpl.cm.gray
plt.imshow(seg_im['imageBF'], cmap=colormap)
for idx in range(len(seg_im['cellseg'])):
seg = seg_im['cellseg'][idx, 0]
plt.plot(seg[:, 1], seg[:, 0], 'r')
plt.plot(find_center(seg)[1], find_center(seg)[0], 'r*')
plt.show()
def find_center(seg):
c_mean = np.mean(seg[:, 1])
r_mean = np.mean(seg[:, 0])
return (int(r_mean), int(c_mean))
"""
def get_circle(seg):
circle = np.zeros(IMAGE_SHAPE)
circle[seg[:, 0], seg[:, 1]] = 1
return circle
def get_circles(seg_im):
circles = np.zeros(IMAGE_SHAPE)
for idx in range(len(seg_im['cellseg'])):
seg = seg_im['cellseg'][idx]
circles[seg[:, 0], seg[:, 1]] = 1
return circles
"""
"""
seg_data = load_csg('E:/LTQ work/tanglab/deepYeast/xy01 1-120.csg')
seg_im = next(segperim_generator(seg_data))
plot_cellseg(seg_im)
"""
"""
# 看来还是不能保存为.mat 不然再次打开内部结构和数据类型就乱了
def load_seg_im_data(filename):
mat_contents = sio.loadmat(filename)
data = mat_contents['data']
"""
def load_data(filename_list):
Xy_list = list()
for filename in filename_list:
Xy_list.append(np.loadtxt(filename, dtype=np.int32, comments='#', delimiter=' '))
Xy = np.vstack(tuple(Xy_list))
np.random.shuffle(Xy)
X = Xy[:, 1:]
y = Xy[:, 0]
X = X.reshape(X.shape[0], WINDOW_SHAPE[0], WINDOW_SHAPE[1])
return X, y
def load_rect_data(filename_list):
Xy_list = list()
for filename in filename_list:
Xy_list.append(np.loadtxt(filename, dtype=np.int32, comments='#', delimiter=' '))
Xy = np.vstack(tuple(Xy_list))
np.random.shuffle(Xy)
X = Xy[:, 4:]
y = Xy[:, 0:4]
X = X.reshape(X.shape[0], WINDOW_SHAPE[0], WINDOW_SHAPE[1])
return X, y
def save_image(data, path):
for idx in range(data.shape[0]):
im = data[idx]
img = Image.fromarray(np.uint16(im))
img.save(os.path.join(path, '%s.tif'%idx))
def plot_rect(imageBF, vertex):
colormap = mpl.cm.gray
plt.imshow(imageBF, cmap=colormap)
(r1, r2, c1, c2) = vertex
plt.plot(np.ones(r2-r1)*c1, np.array(range(r1, r2)), 'r')
plt.plot(np.ones(r2-r1)*c2, np.array(range(r1, r2)), 'r')
plt.plot(np.array(range(c1, c2)), np.ones(c2-c1)*r1, 'r')
plt.plot(np.array(range(c1, c2)), np.ones(c2-c1)*r2, 'r')
plt.xlim(0, WINDOW_SHAPE[1])
plt.ylim(WINDOW_SHAPE[0], 0)
plt.show()
def poly2mask(vertex_row_coords, vertex_col_coords, shape):
fill_row_coords, fill_col_coords = draw.polygon(vertex_row_coords, vertex_col_coords, shape)
mask = np.zeros(shape, dtype=np.bool)
mask[fill_row_coords, fill_col_coords] = True
return mask
def pol2cart(phi, rho):
x = rho * np.cos(phi)
y = rho * np.sin(phi)
return (x, y)