Initial version for testing

This commit is contained in:
Magnus
2021-03-26 19:42:58 +01:00
commit 5f04d6e65e
41 changed files with 15774 additions and 0 deletions

327
src/gyro.cpp Normal file
View File

@ -0,0 +1,327 @@
/*
MIT License
Copyright (c) 2021 Magnus
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "gyro.h"
#include "helper.h"
GyroSensor myGyro;
#define SENSOR_MOVING_THREASHOLD 500
#define SENSOR_READ_COUNT 50
#define SENSOR_READ_DELAY 3150 // us, empirical, to hold sampling to 200 Hz
//#define GYRO_SHOW_MINMAX // Will calculate the min/max values when doing calibration
//#define GYRO_CALIBRATE_STARTUP // Will calibrate sensor at startup
//
// Initialize the sensor chip.
//
bool GyroSensor::setup() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Setting up hardware." CR));
#endif
Wire.begin(D3, D4);
Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
accelgyro.initialize();
if( !accelgyro.testConnection() ) {
Log.error(F("GYRO: Failed to connect to MPU6050 (gyro)." CR));
sensorConnected = false;
} else {
Log.notice(F("GYRO: Connected to MPU6050 (gyro)." CR));
sensorConnected = true;
// Configure ethe sensor
accelgyro.setTempSensorEnabled(true);
accelgyro.setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
accelgyro.setFullScaleGyroRange(MPU6050_GYRO_FS_250);
accelgyro.setDLPFMode(MPU6050_DLPF_BW_5);
accelgyro.setRate(17);
// For now we run the calibration at start.
#if defined ( GYRO_CALIBRATE_STARTUP )
calibrateSensor();
#endif
// Once we have calibration values stored we just apply them from the config.
calibrationOffset = myConfig.getGyroCalibration();
applyCalibration();
}
return sensorConnected;
}
//
// Set sensor in sleep mode to conserve battery
//
void GyroSensor::enterSleep() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Setting up hardware." CR));
#endif
accelgyro.setSleepEnabled( true );
}
//
// Do a number of reads to get a more stable value.
//
void GyroSensor::readSensor(RawGyroData &raw, const int noIterations, const int delayTime) {
RawGyroDataL average = { 0, 0, 0, 0, 0, 0 };
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Reading sensor with %d iterations %d us delay." CR), noIterations, delayTime );
#endif
// Set some initial values
#if defined( GYRO_SHOW_MINMAX )
RawGyroData min, max;
//accelgyro.getRotation( &min.gx, &min.gy, &min.gz );
accelgyro.getAcceleration( &min.ax, &min.ay, &min.az );
min.temp = accelgyro.getTemperature();
max = min;
#endif
for(int cnt = 0; cnt < noIterations ; cnt ++) {
accelgyro.getRotation( &raw.gx, &raw.gy, &raw.gz );
accelgyro.getAcceleration( &raw.ax, &raw.ay, &raw.az );
raw.temp = accelgyro.getTemperature();
average.ax += raw.ax;
average.ay += raw.ay;
average.az += raw.az;
average.gx += raw.gx;
average.gy += raw.gy;
average.gz += raw.gz;
average.temp += raw.temp;
// Log what the minium value is
#if defined( GYRO_SHOW_MINMAX )
if( raw.ax < min.ax ) min.ax = raw.ax;
if( raw.ay < min.ay ) min.ay = raw.ay;
if( raw.az < min.az ) min.az = raw.az;
if( raw.gx < min.gx ) min.gx = raw.gx;
if( raw.gy < min.gy ) min.gy = raw.gy;
if( raw.gz < min.gz ) min.gz = raw.gz;
if( raw.temp < min.temp ) min.temp = raw.temp;
// Log what the maximum value is
if( raw.ax > max.ax ) max.ax = raw.ax;
if( raw.ay > max.ay ) max.ay = raw.ay;
if( raw.az > max.az ) max.az = raw.az;
if( raw.gx > max.gx ) max.gx = raw.gx;
if( raw.gy > max.gy ) max.gy = raw.gy;
if( raw.gz > max.gz ) max.gz = raw.gz;
if( raw.temp > max.temp ) max.temp = raw.temp;
#endif
delayMicroseconds( delayTime );
}
raw.ax = average.ax/noIterations;
raw.ay = average.ay/noIterations;
raw.az = average.az/noIterations;
raw.gx = average.gx/noIterations;
raw.gy = average.gy/noIterations;
raw.gz = average.gz/noIterations;
raw.temp = average.temp/noIterations;
#if LOG_LEVEL==6
#if defined( GYRO_SHOW_MINMAX )
Log.verbose(F("GYRO: Min \t%d\t%d\t%d\t%d\t%d\t%d\t%d." CR), min.ax, min.ay, min.az, min.gx, min.gy, min.gz, min.temp );
Log.verbose(F("GYRO: Max \t%d\t%d\t%d\t%d\t%d\t%d\t%d." CR), max.ax, max.ay, max.az, max.gx, max.gy, max.gz, max.temp );
#endif
Log.verbose(F("GYRO: Average\t%d\t%d\t%d\t%d\t%d\t%d\t%d." CR), raw.ax, raw.ay, raw.az, raw.gx, raw.gy, raw.gz, raw.temp );
//Log.verbose(F("GYRO: Result \t%d\t%d\t%d\t%d\t%d\t%d." CR), average.ax/noIterations, average.ay/noIterations, average.az/noIterations,
// average.gx/noIterations, average.gy/noIterations, average.gz/noIterations );
#endif
}
//
// Calcuate the angles (tilt)
//
double GyroSensor::calculateAngle(RawGyroData &raw) {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Calculating the angle." CR) );
#endif
// Source: https://www.nxp.com/docs/en/application-note/AN3461.pdf
double v = (acos( raw.ay / sqrt( raw.ax*raw.ax + raw.ay*raw.ay + raw.az*raw.az ) ) *180.0 / PI);
//Log.notice(F("GYRO: angle = %F." CR), v );
//double v = (acos( raw.az / sqrt( raw.ax*raw.ax + raw.ay*raw.ay + raw.az*raw.az ) ) *180.0 / PI);
//Log.notice(F("GYRO: angle = %F." CR), v );
#if LOG_LEVEL==6
Log.verbose(F("GYRO: angle = %F." CR), v );
#endif
return v;
}
//
// Check if the values are high that indicate that the sensor is moving.
//
bool GyroSensor::isSensorMoving(RawGyroData &raw) {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Checking for sensor movement." CR) );
#endif
int x = abs(raw.gx), y = abs(raw.gy), z = abs(raw.gz);
if( x>SENSOR_MOVING_THREASHOLD || y>SENSOR_MOVING_THREASHOLD || z>SENSOR_MOVING_THREASHOLD ) {
Log.notice(F("GYRO: Movement detected (%d)\t%d\t%d\t%d." CR), SENSOR_MOVING_THREASHOLD, x, y, z);
return true;
}
return false;
}
//
// Read the tilt angle from the gyro.
//
bool GyroSensor::read() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Getting new gyro position." CR) );
#endif
RawGyroData raw;
readSensor( raw, SENSOR_READ_COUNT, SENSOR_READ_DELAY );
// If the sensor is unstable we return false to signal we dont have valid value
if( isSensorMoving(raw) ) {
Log.notice(F("GYRO: Sensor is moving." CR) );
validValue = false;
} else {
validValue = true;
angle = calculateAngle( raw );
//Log.notice(F("GYRO: Calculated angle %F" CR), angle );
}
return validValue;
}
//
// Dump the stored calibration values.
//
void GyroSensor::dumpCalibration() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Accel offset\t%d\t%d\t%d" CR), calibrationOffset.ax, calibrationOffset.ay, calibrationOffset.az );
Log.verbose(F("GYRO: Gyro offset \t%d\t%d\t%d" CR), calibrationOffset.gx, calibrationOffset.gy, calibrationOffset.gz );
#endif
}
//
// Update the sensor with out calculated offsets.
//
void GyroSensor::applyCalibration() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Applying calibration offsets to sensor." CR) );
#endif
if( ( calibrationOffset.ax + calibrationOffset.ay + calibrationOffset.az + calibrationOffset.gx + calibrationOffset.gy + calibrationOffset.gz ) == 0 ) {
Log.error(F("GYRO: No valid calibraion values exist, aborting." CR) );
return;
}
accelgyro.setXAccelOffset( calibrationOffset.ax );
accelgyro.setYAccelOffset( calibrationOffset.ay );
accelgyro.setZAccelOffset( calibrationOffset.az );
accelgyro.setXGyroOffset( calibrationOffset.gx );
accelgyro.setYGyroOffset( calibrationOffset.gy );
accelgyro.setZGyroOffset( calibrationOffset.gz );
}
//
// Calculate the offsets for calibration.
//
void GyroSensor::calibrateSensor() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Calibrating sensor" CR) );
#endif
//accelgyro.PrintActiveOffsets();
//Serial.print( CR );
accelgyro.setDLPFMode(MPU6050_DLPF_BW_5);
accelgyro.CalibrateAccel(6); // 6 = 600 readings
accelgyro.CalibrateGyro(6);
accelgyro.PrintActiveOffsets();
Serial.print( CR );
calibrationOffset.ax = accelgyro.getXAccelOffset();
calibrationOffset.ay = accelgyro.getYAccelOffset();
calibrationOffset.az = accelgyro.getZAccelOffset();
calibrationOffset.gx = accelgyro.getXGyroOffset();
calibrationOffset.gy = accelgyro.getYGyroOffset();
calibrationOffset.gz = accelgyro.getZGyroOffset();
// Save the calibrated values
myConfig.setGyroCalibration( calibrationOffset );
myConfig.saveFile();
}
//
// Calibrate the device.
//
void GyroSensor::debug() {
#if LOG_LEVEL==6
Log.verbose(F("GYRO: Debug - Clock src %d." CR), accelgyro.getClockSource() );
Log.verbose(F("GYRO: Debug - Device ID %d." CR), accelgyro.getDeviceID() );
Log.verbose(F("GYRO: Debug - DHPF Mode %d." CR), accelgyro.getDHPFMode() );
Log.verbose(F("GYRO: Debug - DMP on %s." CR), accelgyro.getDMPEnabled()?"on":"off" );
Log.verbose(F("GYRO: Debug - Acc range %d." CR), accelgyro.getFullScaleAccelRange() );
Log.verbose(F("GYRO: Debug - Gyr range %d." CR), accelgyro.getFullScaleGyroRange() );
Log.verbose(F("GYRO: Debug - Int %s." CR), accelgyro.getIntEnabled()?"on":"off" );
Log.verbose(F("GYRO: Debug - Clock %d." CR), accelgyro.getMasterClockSpeed() );
Log.verbose(F("GYRO: Debug - Rate %d." CR), accelgyro.getRate() );
Log.verbose(F("GYRO: Debug - Gyro range %d." CR), accelgyro.getFullScaleGyroRange() );
// Log.verbose(F("GYRO: Debug - I2C bypass %s." CR), accelgyro.getI2CBypassEnabled()?"on":"off" );
// Log.verbose(F("GYRO: Debug - I2C master %s." CR), accelgyro.getI2CMasterModeEnabled()?"on":"off" );
Log.verbose(F("GYRO: Debug - Acc FactX %d." CR), accelgyro.getAccelXSelfTestFactoryTrim() );
Log.verbose(F("GYRO: Debug - Acc FactY %d." CR), accelgyro.getAccelYSelfTestFactoryTrim() );
Log.verbose(F("GYRO: Debug - Acc FactZ %d." CR), accelgyro.getAccelZSelfTestFactoryTrim() );
Log.verbose(F("GYRO: Debug - Gyr FactX %d." CR), accelgyro.getGyroXSelfTestFactoryTrim() );
Log.verbose(F("GYRO: Debug - Gyr FactY %d." CR), accelgyro.getGyroYSelfTestFactoryTrim() );
Log.verbose(F("GYRO: Debug - Gyr FactZ %d." CR), accelgyro.getGyroZSelfTestFactoryTrim() );
switch( accelgyro.getFullScaleAccelRange() ) {
case 0:
Log.verbose(F("GYRO: Debug - Accel range +/- 2g." CR));
break;
case 1:
Log.verbose(F("GYRO: Debug - Accel range +/- 4g." CR));
break;
case 2:
Log.verbose(F("GYRO: Debug - Accel range +/- 8g." CR));
break;
case 3:
Log.verbose(F("GYRO: Debug - Accel range +/- 16g." CR));
break;
}
Log.verbose(F("GYRO: Debug - Acc OffX %d\t%d." CR), accelgyro.getXAccelOffset(), calibrationOffset.az );
Log.verbose(F("GYRO: Debug - Acc OffY %d\t%d." CR), accelgyro.getYAccelOffset(), calibrationOffset.ay );
Log.verbose(F("GYRO: Debug - Acc OffZ %d\t%d." CR), accelgyro.getZAccelOffset(), calibrationOffset.az );
Log.verbose(F("GYRO: Debug - Gyr OffX %d\t%d." CR), accelgyro.getXGyroOffset(), calibrationOffset.gx );
Log.verbose(F("GYRO: Debug - Gyr OffY %d\t%d." CR), accelgyro.getYGyroOffset(), calibrationOffset.gy );
Log.verbose(F("GYRO: Debug - Gyr OffZ %d\t%d." CR), accelgyro.getZGyroOffset(), calibrationOffset.gz );
#endif
}
// EOF