154 lines
6.6 KiB
Python
154 lines
6.6 KiB
Python
from datetime import datetime, timedelta
|
|
|
|
from recipes import settings
|
|
from django.contrib.postgres.search import (
|
|
SearchQuery, SearchRank, TrigramSimilarity
|
|
)
|
|
from django.db.models import Q, Subquery, Case, When, Value
|
|
from django.utils import translation
|
|
|
|
from cookbook.managers import DICTIONARY
|
|
from cookbook.models import Food, Keyword, ViewLog
|
|
|
|
|
|
def search_recipes(request, queryset, params):
|
|
fields = {
|
|
'name': 'name',
|
|
'description': 'description',
|
|
'instructions': 'steps__instruction',
|
|
'foods': 'steps__ingredients__food__name',
|
|
'keywords': 'keywords__name'
|
|
}
|
|
|
|
search_string = params.get('query', '')
|
|
search_keywords = params.getlist('keywords', [])
|
|
search_foods = params.getlist('foods', [])
|
|
search_books = params.getlist('books', [])
|
|
|
|
search_keywords_or = params.get('keywords_or', True)
|
|
search_foods_or = params.get('foods_or', True)
|
|
search_books_or = params.get('books_or', True)
|
|
|
|
search_internal = params.get('internal', None)
|
|
search_random = params.get('random', False)
|
|
search_new = params.get('new', False)
|
|
search_last_viewed = int(params.get('last_viewed', 0))
|
|
|
|
if search_last_viewed > 0:
|
|
last_viewed_recipes = ViewLog.objects.filter(
|
|
created_by=request.user, space=request.space,
|
|
created_at__gte=datetime.now() - timedelta(days=14)).values_list(
|
|
'recipe__pk', flat=True).distinct()
|
|
return queryset.filter(pk__in=list(set(last_viewed_recipes))[-search_last_viewed:])
|
|
|
|
queryset = queryset.annotate(
|
|
new_recipe=Case(When(
|
|
created_at__gte=(datetime.now() - timedelta(days=7)), then=Value(100)),
|
|
default=Value(0), )).order_by('-new_recipe', 'name')
|
|
|
|
search_type = None
|
|
search_sort = None
|
|
if len(search_string) > 0:
|
|
# TODO move all of these to settings somewhere - probably user settings
|
|
|
|
unaccent_include = ['name', 'description', 'instructions', 'keywords', 'foods'] # can also contain: description, instructions, keywords, foods
|
|
# TODO when setting up settings length of arrays below must be >=1
|
|
|
|
icontains_include = [] # can contain: name, description, instructions, keywords, foods
|
|
istartswith_include = ['name'] # can also contain: description, instructions, keywords, foods
|
|
trigram_include = ['name', 'description', 'instructions'] # only these choices - keywords and foods are really, really, really slow maybe add to subquery?
|
|
fulltext_include = ['name', 'description', 'instructions', 'foods', 'keywords']
|
|
|
|
# END OF SETTINGS SECTION
|
|
for f in unaccent_include:
|
|
fields[f] += '__unaccent'
|
|
|
|
filters = []
|
|
for f in icontains_include:
|
|
filters += [Q(**{"%s__icontains" % fields[f]: search_string})]
|
|
|
|
for f in istartswith_include:
|
|
filters += [Q(**{"%s__istartswith" % fields[f]: search_string})]
|
|
|
|
if settings.DATABASES['default']['ENGINE'] in ['django.db.backends.postgresql_psycopg2', 'django.db.backends.postgresql']:
|
|
language = DICTIONARY.get(translation.get_language(), 'simple')
|
|
# django full text search https://docs.djangoproject.com/en/3.2/ref/contrib/postgres/search/#searchquery
|
|
search_type = 'websearch' # other postgress options are phrase or plain or raw (websearch and trigrams are mutually exclusive)
|
|
search_trigram = False
|
|
search_query = SearchQuery(
|
|
search_string,
|
|
search_type=search_type,
|
|
config=language,
|
|
)
|
|
|
|
# iterate through fields to use in trigrams generating a single trigram
|
|
if search_trigram & len(trigram_include) > 1:
|
|
trigram = None
|
|
for f in trigram_include:
|
|
if trigram:
|
|
trigram += TrigramSimilarity(fields[f], search_string)
|
|
else:
|
|
trigram = TrigramSimilarity(fields[f], search_string)
|
|
queryset.annotate(simularity=trigram)
|
|
filters += [Q(simularity__gt=0.5)]
|
|
|
|
if 'name' in fulltext_include:
|
|
filters += [Q(name_search_vector=search_query)]
|
|
if 'description' in fulltext_include:
|
|
filters += [Q(desc_search_vector=search_query)]
|
|
if 'instructions' in fulltext_include:
|
|
filters += [Q(steps__search_vector=search_query)]
|
|
if 'keywords' in fulltext_include:
|
|
filters += [Q(keywords__in=Subquery(Keyword.objects.filter(name__search=search_query).values_list('id', flat=True)))]
|
|
if 'foods' in fulltext_include:
|
|
filters += [Q(steps__ingredients__food__in=Subquery(Food.objects.filter(name__search=search_query).values_list('id', flat=True)))]
|
|
query_filter = None
|
|
for f in filters:
|
|
if query_filter:
|
|
query_filter |= f
|
|
else:
|
|
query_filter = f
|
|
|
|
# TODO this is kind of a dumb method to sort. create settings to choose rank vs most often made, date created or rating
|
|
search_rank = (
|
|
SearchRank('name_search_vector', search_query, cover_density=True)
|
|
+ SearchRank('desc_search_vector', search_query, cover_density=True)
|
|
+ SearchRank('steps__search_vector', search_query, cover_density=True)
|
|
)
|
|
queryset = queryset.filter(query_filter).annotate(rank=search_rank)
|
|
else:
|
|
queryset = queryset.filter(query_filter)
|
|
|
|
if len(search_keywords) > 0:
|
|
if search_keywords_or == 'true':
|
|
queryset = queryset.filter(keywords__id__in=search_keywords)
|
|
else:
|
|
for k in search_keywords:
|
|
queryset = queryset.filter(keywords__id=k)
|
|
|
|
if len(search_foods) > 0:
|
|
if search_foods_or == 'true':
|
|
queryset = queryset.filter(steps__ingredients__food__id__in=search_foods)
|
|
else:
|
|
for k in search_foods:
|
|
queryset = queryset.filter(steps__ingredients__food__id=k)
|
|
|
|
if len(search_books) > 0:
|
|
if search_books_or == 'true':
|
|
queryset = queryset.filter(recipebookentry__book__id__in=search_books)
|
|
else:
|
|
for k in search_books:
|
|
queryset = queryset.filter(recipebookentry__book__id=k)
|
|
|
|
if search_internal == 'true':
|
|
queryset = queryset.filter(internal=True)
|
|
|
|
queryset = queryset.distinct()
|
|
|
|
if search_random == 'true':
|
|
queryset = queryset.order_by("?")
|
|
elif search_sort == 'rank':
|
|
queryset = queryset.order_by('-rank')
|
|
|
|
return queryset
|